SYLLABUS *Mathematics Applied to Economics*

1. Information on academic programme

1.1. University	"1 Decembrie 1918" University of Alba Iulia
1.2. Faculty	Faculty of Economics
1.3. Departament	Business Administration and Marketing
1.4. Field of Study	Business Administration
1.5. Cycle of Study	Undergraduate
1.6. Academic programme	Business Administration/ 242102 Process improvement specialist, 242104
/ Qualification	Process manager, 242110 Economic performance planning, control and reporting
	specialist

2. Information of Course Matter

2.1. Course		Mathematics .	Applied to 1	Economics 2.2.	Code	BA112	
2.3. Course Leader/ Seminar Tutor		Dorin Wai	Dorin Wainberg				
2.4. Seminar Tutor			Dorin Wai	nberg			
2.5. Academic Year	Ι	2.6. Semester	I	2.7. Type of Evaluation (E – final exam/C- examination /VP)	E	2.8. Type of course (C – Compulsory, Op – optional, F - Facultative)	С

3. Course Structure (Weekly number of hours)

3.1. Weekly number of	4	3.2. course	2	3.3. seminar, laboratory	2
hours					
3.4. Total number of	56	3.5. course	28	3.6. seminar, laboratory	28
hours in the curriculum					
Allocation of time:					hours
Individual study of read	ers				35
Documentation (library)	1				20
Home assignments, Essa	ays, Portfolio	0S			35
Tutorials				-	
Assessment (examinations)				4	
Other activities				-	
27 Total number of hours	fon in dividuo	l atudu 0			

3.7 Total number of hours for individual study	94
3.9 Total number of hours per semester	150
3.10 Number of credits	6

4. Prerequisites (*where applicable*)

4.1. about curriculum	-
4.2. about competences	-

5. Requisites (*where applicable*)

	5.1. course-related	Classroom with video projector / board
5.2. seminar/laboratory-based Classroom with whiteboard	5.2. seminar/laboratory-based	Classroom with whiteboard

6. Specific competences to be aquired (chosen by the course leader from the programme general competences grid)

\mathbf{I} ∂ /	
Professional competences	C1. Adequate use of the concepts, theories, methods and instruments of financial type in
-	public and private entities/organisations
	C2. Data collecting, analysis and interpretation, and items of information about economic
	and financial problems
	C3. Budget planning and implementation at the level of public and private entities/
	organisations
Transversal competences	

7. Course objectives (as per the programme specific competences grid)

7.1 General objectives of	On the one hand, the aim of the discipline is to provide students
the course	with the capacity to analyse and decide in a logical and rigorous mode, and on
	the other hand, to contribute to the future economists 'multidisciplinary trainig.
	This is the reason why the course content aims to the students' familiarization
	with the concepts and mathematical modelling technique applied to the
	economic phenomena, the business plan placement in mathematical context and
	its solving with mathematical programming methods, the formulation of
	mathematical models for deferred payments and credits, as well as loan
	reimbursement, and the optimization of certain financial operations
7.2 Specific objectives of	• To characterise the concept of mathematical model for an economic
the course	process;
	• To distinguish between various types of models (physical, abstract,
	deterministic, stochastic, linear, non-linear models, etc);
	• To know the main stages in drawing up of a mathematical model (the
	analysis of economic problem, formalization of the realtions between the
	elements of a problem, model building, model solving, i.e. solution
	establishment, analysis, interpretation, validation and implementation);
	• To determine the algoritm for dual problem elaboration;
	• To identify the method (methods) for solving PPLs (simplex method,
	transport method,);
	• To distinguish between algorithms for PPL solving;
	• To describe the algorithms for PPL solving in postoptimization situations
	(free term changes in restrictions – changes in the quantity of the available
	resources, changes in the coefficients of the objective function – price and
	unitary profit changes, modification of the technological coefficients, etc.);
	• To characterise the algorithm for PPL solving in whole numbers;
	• To determine the special cases of the transport problems
	• To recognize and use mathematical models associated with the following
	types of operations:
	- simple and compound interest; valorification and updating;

- simple interest paid in advance; - loan amortization; annuities.	
---	--

8. Course contents

8.1 Course	Teaching methods	Observations
Solving linear programming problems	Lecture,	
Algebraic and geometrical method	presentation,	2 hours
	discussions	
Simplex algorithm	Lecture,	
Particular cases: the infinite case, the degenerate case, multiple	presentation,	2 hours
solution case	discussions	
Duality. Dual simplex	Lecture.	
Couple of dual problems - symmetrical form	presentation.	2 hours
	discussions	
Re-optimization of linear programming problems	Lecture.	
Changes in vector c, column vector from matrix A, free term	presentation.	2 hours
vectors	discussions	
Parametric linear programming	Lecture.	
Linear dependency of a vector C parameter, and free term	presentation.	2 hours
vector	discussions	
Transport problems	Lecture.	
Particular cases: degenerate solution, multiple solution case	presentation.	2 hours
	discussions	
Transport problem re-optimization	Lecture.	
Modification of: the coefficient matrix, what is available	presentation,	2 hours
and/or what is needed	discussions	
Parametric transport problems.	Lecture,	
Linear vector dependency: of the coefficient matrix, what is	presentation,	2 hours
available and/or what is needed	discussions	
Special transport problems	Lecture,	
Problems with: imposed solution, restricted routes, grouped	presentation,	2 hours
offer or demand	discussions	
Simple interest	Lecture,	
Unitary interest, fructification, updating factor, medium values	presentation,	2 hours
	discussions	
Compound interest	Lecture,	
Gobal fructification/updating factor, initial/final sum	presentation,	2 hours
	discussions	
Annual deferred payment (annuities)	Lecture,	
Anticipated or posticipated payment	presentation,	2 hours
	discussions	
Credit and loan reimbursement	Lecture,	
Equivalent loan systems	presentation,	2 hours
	discussions	
Direct and indirect amortizations	Lecture,	2 hours

	presentation,			
	discussions			
8.2 Bibliography				
[1] J. Franklin, Mathematical Methods of Economics: Linear and Nonlinear Programming, Fixed-Point Theorem, Springer-Verlag, New York, 1980				
[2] G. B. Dantzig, <i>Linear Programming and Extensions</i> , Princeton Univer	rsity Press. 1963			
[3] David Gale. The Theory of Linear Economic Models. McGraw-Hill, 1	960.			
[4] Samuel Karlin Mathematical Methods and Theory in Games Program	nming and Economics v	ol 1 Addison-		
Wesley 1959	inning and Beentennes, (on 1,11001001		
[5] James K. Straver, Linear Programming and Applications, Springer-Ve	erlag 1989			
[6] F S Hillier and G I Lieberman Introduction to Operations Research	ch 6th ed New York [.] M	cGraw-Hill 1995		
[7] Frnest Haeussler, Ir, and Richard S. Paul. Introductory Mathematical	Analysis for Students of I	Rusiness and		
<i>Economics</i> Reston Publishing Company Inc. Reston VA 1983	Indiysis jor Students of I	Justitess and		
[8] John McCutcheon and William F. Scott. An Introduction to the Mathe	matics of Finance Flsev	ier Butterworth-		
Heinemann 1986	manes of 1 manee, Lisev	ler Butter worth		
[9] Petr Zima and Robert I. Brown Mathematics of Finance 2nd ed. Sci	haum's Outline Series M	cGraw-Hill 1996		
[10] Vasek Chyatal Lingar Programming W H Freeman & Co. 1983	naum 5 Outime Series, wi	colaw IIII, 1990.		
[10] Vasek Chvatal, Enter Programming, W. H. Freeman & Co., 1965. [11] Dorin Wainberg, Mathematics applied in Economics, Seria Didact	ica Univ "1 Decembrie	1918" Alba Julia		
2012		1910 Alba lulla,		
Seminar-lah				
Solving linear programming problems	Presentation analysis	2 hours		
Algebraic and geometrical method	discussions	2 110 11 5		
	aiscussions			
Simplex algorithm	Presentation, analysis	2 hours		
Particular cases: the infinite case, the degenerate case, multiple	discussions			
solution case	ansemistions			
Duality. Dual simplex	Presentation. analysis	2 hours		
Couple of dual problems - symmetrical form	discussions			
Re-optimization of linear programming problems	Presentation, analysis	2 hours		
<i>Changes in vector c, column vector from matrix A, free term</i>	discussions	2 110 111 5		
vectors				
Parametric linear programming	Presentation, analysis	2 hours		
Linear dependency of a vector C parameter, and free term	discussions			
vector				
Transport problems	Presentation, analysis	2 hours		
Particular cases: degenerate solution, multiple solution case	discussions			
Transport problem re-optimization	Presentation, analysis	2 hours		
Modification of: the coefficient matrix, what is available	discussions			
and/or what is needed				
Parametric transport problems.	Presentation, analysis	2 hours		
Linear vector dependency: of the coefficient matrix, what is	discussions			
available and/or what is needed				
Special transport problems	Presentation, analysis	2 hours		
Problems with: imposed solution, restricted routes, grouped	discussions			
offer or demand				
Simple interest	Presentation, analysis	2 hours		
Unitary interest, fructification, updating factor, medium values	discussions			
Compound interest	Presentation, analysis	2 hours		
Gobal fructification/updating factor, initial/final sum				

	discussions	
Annual deferred payment (annuities)	Presentation, analysis,	2 hours
Anticipated or posticipated payment	discussions	
Credit and loan reimbursement	Presentation, analysis,	2 hours
Equivalent loan systems	discussions	
Direct and indirect amortizations	Presentation, analysis,	2 hours
	discussions	

8.2 Bibliography

[1] J. Franklin, *Mathematical Methods of Economics: Linear and Nonlinear Programming, Fixed-Point Theorem*, Springer-Verlag, New York, 1980.

[2] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, 1963

[3] David Gale, The Theory of Linear Economic Models, McGraw-Hill, 1960.

[4] Samuel Karlin, *Mathematical Methods and Theory in Games, Programming and Economics*, vol. 1, Addison-Wesley, 1959.

[5] James K. Strayer, Linear Programming and Applications, Springer-Verlag, 1989.

[6.] F. S. Hillier and G. J. Lieberman.. Introduction to Operations Research, 6th ed. New York: McGraw-Hill, 1995.

[7] Ernest Haeussler, Jr. and Richard S. Paul, *Introductory Mathematical Analysis for Students of Business and Economics*, Reston Publishing Company, Inc., Reston, VA, 1983.

[8] John McCutcheon and William F. Scott, An Introduction to the Mathematics of Finance, Elsevier Butterworth-Heinemann, 1986.

[9] Petr Zima and Robert L. Brown, *Mathematics of Finance*, 2nd ed., Schaum's Outline Series, McGraw-Hill, 1996. [10] Vasek Chvatal, *Linear Programming*, W. H. Freeman & Co., 1983.

[11] Dorin Wainberg, *Mathematics applied in Economics*, Seria Didactica, Univ. "1 Decembrie 1918" Alba Iulia, 2012.

9. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field of the academic programme

The content of the discipline was analyzed in the monitoring and evaluation commission of the study program. Representatives of the employers and professional associations in the field are included in the commission.

- Elaboration of a project / work of a financial nature
- Writing and supporting a case study on an economic-financial problem
- Designing a draft for the execution of a plan or budget

10. Assessment

Type of activity	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight of the final	
			grade	
10.4 Course	Final assessment	Written exam	50%	
	-	-	-	
10.5 Seminar	Eg. Verification during	Writen test	30%	
	the semester	Portfolio with practical works	20%	
	-		-	
10.6Minimum performance standard: Obtaining minimum 5 (five).				
The evaluation test during the course requires the solution of an economic problem using the simplex algorithm. The				
minimum standard involves knowing the steps of the algorithm and placing the problem data in the simplex table.				

The seminar note has a passive participation component and an active participation component.

The written exam contains:

2 optimization problems that are solved with the simplex algorithm and the distributive algorithm, one of them also having a re-optimization component. The minimum standard involves knowing the steps of the algorithm and placing the problem data in the simplex table, respectively in the Tucker diagram. 2 proposals for financial mathematics. The minimum standard implies the correct use of simple and compound

2 proposals for financial mathematics. The minimum standard implies the correct use of simple and compound interest formulas.

Fill in date 04.09.2019

Course titular's signature,

PhD Lect. Dorin Wainberg

D. Wainberg.

Approval date in departament 5.09.2019

Seminar titular's signature,

PhD Lect. Dorin Wainberg

D. Wainberg.

Department director's signature, PhD Assoc.Prof. Gavrila-Paven Ionela

Mounty